Worksheet for October 24

Problems marked with an asterisk are to be placed in your math diary.

- (1.*) Consider the triple integral $\iint \iint_B xyz \, dV$, where $B = [0,2] \times [0,2] \times [0,2]$.
 - (i) Calculate the simple Riemann sum $f(1,1,1) \cdot vol(B)$. Note this is the Riemann sum obtained by not partitioning B and choosing the midpoint of each factor [0, 2].
 - (ii) Divide each interval [0,2] into two subintervals of equal size, say, A_1, A_2 on the x-axis, B_1, B_2 on the y-axis and C_1, C_2 on the z-axis. This partitions B into eight small cubes, $A_i \times B_j \times C_k$, with $1 \leq i, j, k \leq 2$. Choose a point $(x_i, y_j, z_k) \in A_i \times B_j \times C_k$, where x_i is the center of A_i, y_j the center of B_i and z_k , the center of C_k . Calculate the Riemann sum

$$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} f(x_i, y_j, z_k) \cdot \operatorname{vol}(A_i \times B_j \times C_k)$$

- (iii) Do you think your answers in (i) and (ii) are less than, greater than, or equal to the actual value of $\int \int \int_B xyz \ dV?$
- (iv) Calculate $\int \int \int_B xyz \, dV$ using Fubini's theorem for solid rectangles and compare this with your answers in (i) and (ii).
- (v) How would your answers in (i) and (ii) change if you took different partitions or different points in each partition? Confirm this with different examples.

(2.*) Let B denote the solid sphere of radius R centered at the origin.

- (i) Set up the triple integral $\int \int \int_B f(x, y, z) \, dV$ in three different ways, thinking of B as a z-simple, x-simple, and y-simple region.
- (ii) Make an educated guess of the value of $\int \int \int_B x \, dV$. Hint: What is the average value of x over B? (iii) Use Fubini's theorem to calculate $\int \int \int_B x \, dV$. Was your guess in (ii) correct? Note: The actual calculation can be hard or not so hard - its up to you!